ANIMAL
PHYSIOLOGY PRACTICAL REPORT
ADJUSTMENT
OF POIKILOTHERMIK ANIMAL ABOUT DISSOLVED OXYGEN
By:
Zakyah
120210153086
A-International
Group 1
BIOLOGY
EDUCATION STUDY PROGRAM
SCIENCE
DEPARTMENT EDUCATION
FACULTY OF
TEACHER TRAINING AND EDUCATION
JEMBER UNIVERSITY
2014
I.
Title
Adjustment of Poikilothermik Animal about Dissolved
Oxygen
II.
Purpose
This
activity aims to determine adjustments to the poikilothermik animals:
-
The oxygen contained in the water due to the influence
of water temperature
III.
Basic Theory
All organisms
have lethal limits to their temperature range and yet within this range they
also have optimal temperatures for development of structure and function.
Within an ectotherms tolerance limits, variation in temperature will influence
metabolism and therefore related physiological processes, affecting growth,
development and performance—encompassing physiological and behavioural
capabilities. Growth is the most commonly measured response in ectothermic
animals and is often measured in isolation as indicative of response to
temperature. However, temperature influences a range of characters, and early
development such as the larval phase is especially susceptible to temperature
change (Green, Bridget S., Fisher Rebecca, 2004).
Thermoregulation
is the maintenance of the animal's internal temperature kisarah tolerable
(Champbell, 2008: 15)
Terms
that have some what greater presicion and also more information content are
poikilothermic and hoothermic. A poikilothermic animal has a relatively
variable body temperature; a hoothermic one has a relatively constant body
temperature. These terms are useful but they became generally estabilished
prior to the development of a
biologically adequate appreciation of the complexity of animal body
temperature, and they communicate no information about mechanism (Gordon, et
all, 1982: 335)
According
Soesono (1974) in Rasyid (2010), temperature is one of the physical properties
of sea water which can affect the metabolism and growth of aquatic organisms,
besides temperature affects the amount of dissolved oxygen in the water.
According Brotowidjoyo (1995) in Rasyid (2010) Temperature is oceanography parameters of the easiest to learn. Some research shows that fish are very sensitive to changes in temperature, although its value is very small (0,1oC), for example fish telestoi to respond to the changing temperatures of 0,03oC.
According Brotowidjoyo (1995) in Rasyid (2010) Temperature is oceanography parameters of the easiest to learn. Some research shows that fish are very sensitive to changes in temperature, although its value is very small (0,1oC), for example fish telestoi to respond to the changing temperatures of 0,03oC.
Chemical
characteristics, dissolved oxygen plays an important role in water in its
function as the one that is needed by aquatic organisms. One that affect the
levels of dissolved oxygen in water is temperature. Dissolved oxygen also
determines the quantity of an aquatic organism. In addition, dissolved oxygen
is also influenced by other factors such as water vapor pressure and salinity.
Dissolved oxygen in the water column with a variety of reactions and chemical
processes that take place in the waters, but the fluctuations in temperature
will cause a change in the concentration of dissolved oxygen in the waters. (Purba
and Khan, 2010)
Animal
life exists at body temperatures which range between -2"C, in fish and
invertebrates living in arctic waters, to +50"C in desert-living animals. Some creatures may exist at
even more extreme temperatures; for example, it is now known that some
polychaete worms live in deep sea vents at temperatures exceeding 80°C. For the vast majority of
animals, though, the range of temperatures over which any individual can live
is normally much narrower than this. Most animals simply assume the temperature
of their immediate external environment, but birds and mammals regulate their
body temperature and maintain it at a relatively constant level which is
different to that of their immediate external environment. (Kay, 1998: 91)
All organisms have a limit to temperature weeks to sustain their lives. At
this temperature limit, there is an optimum temperature which is very good for
the development of both structure and function. Temperature change will affect
the metabolism and is also closely related to physiological processes, and
implications for the growth and the development and behavior (Green &
Fisher, 2004).
Temperature is an important factor in aquatic ecosystems. Water has several
unique thermal properties, so that changes in the temperature of the water runs
more slowly than in the air. Although the temperature is less volatile in water
than in air, but the temperature is a major limiting factor, therefore aquatic
creatures often have narrow tolerances (Ewusie, 1990: 180)
According to Kay (1998: 98-99) Ectothermic
adaptations to extreme temperatures, when in extreme
cold, Some ectotherms, e.g. fish and invertebrates, are able to live in
extremely cold environments, experiencing temperatures which have the potential
to freeze animal tissues and fluids. Various strategies have evolved in order
to overcome this problem. One final option that has evolved that allows
ectotherms to survive cold environments is the addition of antifreeze proteins
to body fluids, such as those found in fish which inhabit Antarctic waters. The
proteins, which are glycoproteins (protein conjugated with a carbohydrate), are
polymeric molecules of a monomer consisting of a tripeptide linked to a
galactose derivative (alanine-alanine-threonine-galactose derivative). When in extreme hea, Ectotherms exposed to
high temperatures have two means by which they survive. The fi rst of these is
to increase the rate of cooling by evaporation (sweating). In many cases, this
does not present a problem since many ectotherms are moist skinned. These
animals simply increase cutaneous water loss. This is more of a problem for
ectothermic animals which have a covering designed to minimize water loss, e.g.
reptiles and insects.
Ectothermis animals or animal
poikilothermis are animals that depend on external sources for the benefit of
the heat, a little heat of their bodies obtained as a result of their overall
metabolism. Animal ectothermis water, for example fish, loss of body heat
through the gills. The heat setting is also related to the respiratory system
of fish through the gills. Fish gills should be thin and well vascularized to
qualify as a gas exchange that allows body heat is rapidly lost from the blood
passing through the gills. Generally fish gills located between the two pumps,
the pump mouth and gills pump. Pump mouth is supported by a set of basic
muscles of the mouth, and gills pump supported by a gill cover movement
(Soewolo, 2000).
Gills has function to
respiratory but can also function as a means of excretion of salts, food
filter, ion exchange equipment, and osmoregulator. In almost all of the fish,
the gills are important components in gas exchange. Gill arch cartilage is
formed from hardened, with some gill filaments in it. Each gill filament
consists of many lamella, which is where gas exchange. This task is supported
by the lamella structure composed of mast cells as a buffer on the inside.
Lamella periphery that are not attached to the gill arch is very thin, covered
by epithelium tissue containing blood vessels and capillaries. The number and
size of the lamella very large variations, depending on fish behavior (Fujaya,
2008).
Fish do not like any
kind of changes in their environment. Any changes add stress to the fish and
the larger and faster the changes, the greater the stress. So the maintenance
of all the factors becomes very essential for getting maximum yield in a fish
pond. Good water quality is characterised by adequate oxygen, proper
temperature, transparency, limited levels of metabolites and other
environmental factors affecting fish culture (Bhatnagar and Devi, 2013). While the
range of tolerance at Comet Goldfish in the lab this time is difficult to
determine with certainty. However it is known that high temperature causes the
operculum movement and low temperature rise lowers operculum movement.
Such a fish is in an environment characterized by a very high specific heat
and a high level of thermal unformity. In the absence of special conditions,
such as sustained intense activity, very lagre size, or counter current
vascular mechanism, which prevent heat from passing rapidly from muscle to
gills, all fishes, and for that matter all aquatic animals other than mammals
and birds, have body temperatures that do very significantly from that of water
in which they are floating (Gordon, et all, 1982: 340)
Operculum
movement is actually an indicator of the rate of respiration of fish. While
temperature is a limiting factor for fish life. It is known that the high
temperature will cause a reduction in dissolved oxygen gas, the result will
accelerate the movement of operculum fish to get oxygen quickly as needed
respirasinya. According Fujaya (2008) the low amount of oxygen in the water
causing fish or aquatic animals need to pump large amounts of water to the
surface to take Oxygen respirasinya tool. Fujaya adding that not only the large
volumes required but also the pumping energy is also getting bigger.
These potential effects that an inappropriate level of
dissolved oxygen may have on fish illustrates the importance of maintaining
dissolved oxygen at a healthy level. Maintaining a healthy level of dissolved
oxygen is not always easy. First you must know what the correct level of oxygen
is for the particular species offish in the aquarium. Certain fish have adapted
to different levels of dissolved oxygen. It is important to know the level of
oxygen that is relevant to each species. There are many environmental factors
that play a role in the amount of dissolved oxygen to which a particular fish
is accustomed (Nolan, Collin.1996)
It is known that the oxygen uptake of a cold-blooded
animal increases with rising temperature up to a certain maximum which is very
near the thermal deathpoint. Beyond this maximum the oxygen uptake actually
decreases for a very short range of rising temperatures, which indicates that
the temperature is producing adverse effects. Winterstein argues that if the
temperature increases beyond a certain point the oxygen requirements of the
tissues are so high that the oxygen supply becomes inadequate and that death
results from the consequent accumulation of metabolites. (Fraenkel And Herford,
1940)
IV.
Research Methods
4.1 Tools and Materials
Tool
·
Plastic tub
- Thermometers
- Scales
- Stove / heater
- Beaker
- Pan
- Measuring cup
- Mixer
- Stopwatch
- Board marker
- Ice cubes
- Jar
Materials
- Animal
experiment using carp (Cyprinus carpio)
4.2 Procedure
Effect
of medium temperature rise
Decrease the
temperature
V.
Result of Observation
Group
|
Treatent
|
Weight (gr)
|
Temperature (0C)
|
Gerakan Operculum
|
Rata-rata
|
||
1
|
2
|
3
|
|||||
1
|
Dingin
|
7,69
|
28
25
22
19
16
13
10
7
|
141
103
95
60
50
18
11
colaps
|
141
95
100
70
59
26
11
colaps
|
135
89
66
95
61
34
14
colaps
|
139
94
87
75
57
26
12
|
2
|
Dingin
|
8
|
29
26
23
20
17
14
11
8
|
128
122
67
89
97
79
53
57
|
124
116
88
73
90
56
52
colaps
|
118
99
78
79
71
50
48
colaps
|
123
112
78
80
86
61
51
|
3
|
Dingin
|
11,9
|
30
27
24
21
18
15
12
9
|
133
106
109
88
61
48
27
colaps
|
109
86
99
73
64
47
48
colaps
|
115
88
87
101
60
48
40
Colaps
|
119
93,3
98,3
87,3
61,7
47,7
38,3
|
4
|
Panas
|
8,5
|
31
34
37
40
43
46
|
95
149
152
157
172
colaps
|
114
124
128
148
193
colaps
|
87
27
156
155
168
colaps
|
98,66
133,33
145,33
153,33
177,66
|
5
|
Panas
|
17
|
30
33
36
39
42
|
159
142
160
147
colaps
|
172
182
152
172
colaps
|
164
140
138
180 colaps
|
165
154,6
150
166
|
6
|
Panas
|
7,4
|
29
32
35
38
41
|
139
130
97
132
colaps
|
146
132
131
151
colaps
|
133
122
146
168
colaps
|
139,3
128
124,6
150,3
|
VI.
Discussion
Pada
praktikum ini tentang penyesuaian hewan poikilotermik terhadap oksigen terlarut
yang bertujuan untuk mengetahui penyesuaian hewan poikilotermik terhadap
oksigen yang terkandung di dalam air karena pengaruh suhu air. Seperti yang kita ketahui bahwa ikan merupakan hewan poikilotermik.
Artinya, dalam mekanisme termoregulasinya ikan memiliki ketergantungan suhu
terhadap lingkungannya. Hal ini dapat dibuktikan dengan percobaan menaikkan dan
menurunkan suhu air tempat ikan tersebut hidup. Air yang digunakan untuk percobaan ini dengan dua perlakuan, yaitu
panas dan dingin. Untuk kelompok 1, 2, dan 3 dengan menggunakan perlakuan penurunan
suhu (air es) dan kelompok 4, 5, dan 6 menggunakan perlakuan kenaikan suhu (air
panas).
Data
kelas yang diperoleh pada praktikum tersebut pada tiap kelompok adalah sebagai
berikut;
Hasil
yang diperoleh kelompok 1 dengan perlakuan penurunan suhu dengan interval 30C
menggunakan ikan mas dengan berat 7,69 gram menunjukkan pada suhu 280C
diperoleh rata-rata hasil gerak operkulum ikan adalah 139 kali per-menit. Pada
suhu 250C diperoleh rata-rata gerakan operkulum ikan adalah 94 kali
per-menit. Pada suhu 220C diperoleh rata-rata hasil pengamatan gerak
operkulum ikan adalah 87 kali per-menit. Pada suhu 190C diperoleh
rata-rata gerak operkulum ikan adalah 75 kali per-menit. Pada suhu 160C
diperoleh hasil rata-rata gerak operkulum ikan adalah 57 kali per-menit. Pada
suhu 130C diperoleh rata-rata gerak operkulum ikan 26 kali
per-menit. Dan pada suhu 100C diperoleh rata-rata gerak operkulum
ikan 12 kali per-menit. Dan pada suhu 70C ikan mengalami kolaps.
Hasil
yang diperoleh kelompok 2 dengan perlakuan penurunan suhu dengan interval 30C
menggunakan ikan mas dengan berat 8 gram yaitu pada suhu 290C
diperoleh rata-rata hasil gerak operkulum ikan adalah 122 kali per-menit. Pada
suhu 260C diperoleh rata-rata gerakan operkulum ikan adalah 112 kali
per-menit. Pada suhu 230C diperoleh rata-rata hasil pengamatan gerak
operkulum ikan adalah 78 kali per-menit. Pada suhu 200C diperoleh
rata-rata gerak operkulum ikan adalah 80 kali per-menit. Pada suhu 170C
diperoleh hasil rata-rata gerak operkulum ikan adalah 86 kali per-menit. Pada
suhu 140C diperoleh rata-rata gerak operkulum ikan 61 kali
per-menit. Dan pada suhu 110C diperoleh rata-rata gerak operkulum
ikan 51 kali per-menit. Dan pada suhu 80C ikan mengalami kolaps.
Hasil
yang diperoleh kelompok 3 dengan perlakuan penurunan suhu dengan interval 30C
menggunakan ikan mas dengan berat 11,9 gram yaitu pada suhu 300C
diperoleh rata-rata hasil gerak operkulum ikan adalah 119 kali per-menit. Pada
suhu 270C diperoleh rata-rata gerakan operkulum ikan adalah 93 kali
per-menit. Pada suhu 240C diperoleh rata-rata hasil pengamatan gerak
operkulum ikan adalah 98 kali per-menit. Pada suhu 210C diperoleh
rata-rata gerak operkulum ikan adalah 87 kali per-menit. Pada suhu 180C
diperoleh hasil rata-rata gerak operkulum ikan adalah 61 kali per-menit. Pada
suhu 150C diperoleh rata-rata gerak operkulum ikan 47 kali per-menit.
Dan pada suhu 120C diperoleh rata-rata gerak operkulum ikan 38 kali
per-menit. Dan pada suhu 90C ikan mengalami kolaps.
Hasil
yang diperoleh kelompok 4 dengan perlakuan kenaikan suhu dengan interval suhu 30C
dengan menggunakan ikan mas dengan berat 8,5 gram diperoleh hasil pada suhu 310C
rata-rata gerak operkulum ikan adalah 98 kali per-menit. Pada suhu 340C
diperoleh rata-rata gerak operkulum ikan adalah 133 kali per-menit. Pada suhu
370C diperoleh data rata-rata gerak operkulum sebanyak 145 kali per-menit.
Pada suhu 400C diperoleh rata-rata gerak operkulum ikan adalah 153
kali per-menit. Pada suhu 430C diperoleh rata-rata gerak operkulum
ikan adalah 177 kali per-menit. Dan pada suhu 460C ikan mengalami
kolaps.
Hasil
yang diperoleh kelompok 5 dengan perlakuan kenaikan suhu dengan interval suhu 30C
dengan menggunakan ikan mas dengan berat 17 gram diperoleh hasil pada suhu 300C
rata-rata gerak operkulum ikan adalah 165 kali per-menit. Pada suhu 330C
diperoleh rata-rata gerak operkulum ikan adalah 154 kali per-menit. Pada suhu 360C
diperoleh data rata-rata gerak operkulum sebanyak 150 kali per-menit. Pada suhu
390C diperoleh rata-rata gerak operkulum ikan adalah 166 kali
per-menit. Dan pada suhu 420C ikan mengalami kolaps.
Hasil
yang diperoleh kelompok 6 dengan perlakuan kenaikan suhu dengan interval suhu 30C
dengan menggunakan ikan mas dengan berat 7,4 gram diperoleh hasil pada suhu 290C
rata-rata gerak operkulum ikan adalah 139 kali per-menit. Pada suhu 320C
diperoleh rata-rata gerak operkulum ikan adalah 128 kali per-menit. Pada suhu 350C
diperoleh data rata-rata gerak operkulum sebanyak 124 kali per-menit. Pada suhu
380C diperoleh rata-rata gerak operkulum ikan adalah 150 kali
per-menit. Dan pada suhu 410C ikan mengalami kolaps.
Dari
hasil pengamatan yang diperoleh pada percobaan tersebut dapat disimpulkan bahwa
semakin tinggi suhu air gerak operkulum ikan semakin cepat karena oksigen yang
terlarut didalam air semakin sedikit. Hal ini dikarenakan molekul air lebih
padat dan lebih sulit bergerak atau mengalir, sehingga memungkinkan air jauh
lebih sulit mengalir ke organ pernapasan. Oleh karena
itu, ikan harus mengeluarkan energi lebih banyak. Hal ini dapat
mempersulit ikan untuk memperoleh O2, apalagi dengan perlakuan
berupa menaikkan dan menurunkan suhu.
Selanjutnya pada
pengaruh punurunan suhu terhadap kelarutan oksigen di dalam air, pada penurunan
suhu yaitu sampai pada suhu tertentu pada ikan dapat dilihat
bahwa semakin suhu diturunkan dari suhu normal, maka gerakan operkulum juga
semakin rendah. Hal ini menunjukkan bahwa semakin rendah suhu pada lingkungan
maka intensitas gerakan operkulum semakin lambat dikarenakan proses metabolisme
berjalan lambat dan memperlambat kerja organ pernafasan pada ikan karena
membekunya berbagai organ vital seperti insang dan liver.
Hewan poikilotermik seperti ikan,
mempertahankan kondisi tubuhnya ikan beradaptasi dengan cara konformitas yaitu
menyesuaikan lingkungan internal tubuhnya dengan lingkungan eksternalnya. Salah
satu bentuk adaptasinya adalah penyesuaian dengan suhu lingkungannya, sehingga
ikan dapat dikatakan sebagai termokonformer. Setiap organisme termasuk hewan
poikilotermik, memiliki rentang toleransi terhadap perubahan suhu lingkungan.
Ketika terjadi perubahan suhu lingkungan, maka organisme akan melakukan proses
homeostasis agar dapat bertahan dan menyesuaikan diri dengan lingkungan. Akan
tetapi, jika perubahan suhu lingkungan ini melebihi batas toleransi hewan
tersebut (suhu ekstrem), maka dapat dipastikan hewan tersebut tidak mampu
bertahan. Inilah sebabnya pada suhu 46oC dan 7oC, ikan tidak
mampu lagi menyusuaikan diri terhadap suhu lingkungannya.
Selama menaikkan atau
menurunkan suhu, volume air di dalam bak harus tetap dijaga. Hal ini berkaitan
dengan kelarutan oksigen dalam air. Apabila volume air menjadi lebih sedikit,
maka ketersediaan oksigen di dalam cairan akan sedikit, dan sebaliknnya. Dengan
mempertahankan volume air maka massa jenis akan tetap terjaga dan akan
diketahui secara pasti apa pengaruh kenaikan dan penurunan suhu terhadap kelarutan
oksigen. Namun sebelumnya berat ikan harus ditimbang. Berat ikan ini akan
berpengaruh terhadap tingkat konsumsi oksigen. Jumlah O2 yang
dibutuhkan dan dikonsumsi oleh hewan tergantung dari jenis dan ukuran hewan
serta tingkat aktivitas hewan. Pada umumnya hewan dengan ukuran besar mempunyai
tingkat metabolisme per berat badan yang lebih rendah dibandingkan dengan hewan
kecil, dan karena itu hewan besar tidak membutuhkan terlalu banyak O2
dibandingkan hewan besar. Selain itu, tujuan volume air tetap dijaga yaitu agar
pengukuran dari percobaan satu denagn percobaan yang lain valid.
Kelarutan
oksigen dalam cairan secara umum dipengaruhi oleh :
1.
Tekanan
parsial oksigen (O2) di atas permukaan cairan. Makin tinggi tekanan
O2 di atas permukaan cairan, makin tinggi pada kelarutan oksigen di
dalam cairan.
2.
Suhu cairan atau medium. Makin tinggi suhu
cairan/ medium, makin rendah kelarutan
oksigen dalam cairan medium.
3.
Kadar
garam di dalam cairan. Makin tinggi kadar oksigen cairan, makin rendah
kelarutan oksigen di dalam cairan.
Membuka
dan menutupnya operkulum dipengaruhi proses respirasi ikan yang melalui insang.
Semakin tinggi suhu suatu cairan maka semakin rendah viskositas cairan tersebut
dan semakin berkurang kelarutan oksigen di dalamnya. Untuk mengatasi kondisi
tersebut, maka ikan melakukan adaptasi dengan cara mempercepat gerakan
operkulumnya. Dengan mempercepat gerakan operkulum, air yang masuk akan semakin
banyak sehingga oksigen yang tersedia untuk memenuhi kebutuhan respirasinya
juga akan lebih banyak, sehingga ikan tetap dapat mempertahankan hidupnya.
Ikan merupakan hewan
poikilotermik. Artinya, dalam mekanisme
termoregulasinya ikan memiliki ketergantungan suhu terhadap lingkungannya. Hewan poikilotermik, mempertahankan kondisi
tubuhnya dengan cara konformitas
yaitu menyesuaikan lingkungan internal tubuhnya dengan lingkungan eksternalnya.
Setiap organisme termasuk hewan poikilotermik, memiliki rentang toleransi
terhadap perubahan suhu lingkungan. Ketika terjadi perubahan suhu lingkungan,
maka organisme akan melakukan proses homeostasis agar dapat bertahan dan
menyesuaikan diri dengan lingkungan. Akan tetapi, jika perubahan suhu
lingkungan ini melebihi batas toleransi hewan tersebut (suhu ekstrem), maka
dapat dipastikan hewan tersebut tidak mampu bertahan.
VII.
Closing
7.1 Conclusion
The higher
the water temperature, the faster the fish operculum movement and concentration
of dissolved oxygen in the water the less. Conversely, the lower the
temperature of the water, then the fish operculum slow motion and dissolved
oxygen levels more and more.
The
solubility of oxygen in water is influenced by several things, namely the
partial pressure of oxygen at the surface of the water, water temperature, and
water salinity. The higher partial
pressure of the oxygen solubility will be higher. The higher the
temperature the lower the solubility of oxygen. The higher the salinity, the
lower the solubility of oxygen.
7.2 Suggestion
Practikan
should be more careful and cautious in carrying out the lab and assistant
should always accompany the practitioner in performing the experiment to
minimize the occurrence of errors.
REFFERENCE
Bhatnagar,
Anita and Devi, Pooja. 2013. Water quality guidelines for the management
of pond fish culture. Department
of Zoology, Kurukshetra University, Kurukshetra, India. Volume 3, No 6, 2013.
Champbell,
Neil A, et all. 2008. Biology Edisi
kedelapan jilid 3. Jakarta: Penerbit Erlangga.
Ewusie. 1990. Pengantar Ekologi Tropika. Bandung. Penerbit Institut Teknologi
Bandung
Fraenkel
And Herford. 1940. The Physiological
Action Of Abnormally High Temperatures On Poikilotherm Animals. Department
of Zoology and Applied Entomology, Imperial College of Science and Technology,
London, S.W.7
Fujaya,
Yushinta. 2008. Fisiologi Ikan. Jakarta. Penerbit P.T Rineka Cipta.
Gordon, Malcom S, et all. 1982. Animal Physiology: Principle and Adaptation
fourth edition. New York: Macmillan Publishing Co.Inc
Green, Bridget S., Fisher Rebecca. 2004. Temperature Influences Swimming Speed,
Growth and Larval Duration in Coral Reef Fish Larvae. Journal of
Experimental Marine Biology and Ecology, 299
Kay,
Ian. 1998. Introduction To Animal Physiology. United Kingdom: BIOS Scientific Publishers
Ltd
Nolan, Collin.1996. Ventilation rates for Goldfish Carassius auratus during changes in dissolved
oxygen. Professional Papper. University of Nevada Las Vegas.
12-4-1996
Purba, Noir P. and Alexander M.A. Khan. 2010. Karakateristik Fisika-Kimia Perairan Pantai Dumai Pada Musim Peralihan.
Jurnal Akuatika Volume
I Nomor 1/ Maret 2010
Rasyid, Abd. 2010. Surface Temperature Distribution in West-East
Transition Season Related to Small Pelagic Fish Fishing Ground in Spermonde
Waters. Torani (Jurnal Ilmu
Kelautan dan Perikanan ) Vol. 20 (1) April 2010: 1 – 7
Soewolo. 2000. Pengantar Fisiologi Hewan. Jakarta: Departemen Pendidikan Nasional.
Tidak ada komentar:
Posting Komentar