Kamis, 21 Mei 2015

ANIMAL PHYSIOLOGY PRACTICAL REPORT ADJUSTMENT OF POIKILOTHERMIK ANIMAL ABOUT DISSOLVED OXYGEN

Description: Description: UNEJ

ANIMAL PHYSIOLOGY PRACTICAL REPORT
ADJUSTMENT OF POIKILOTHERMIK ANIMAL ABOUT DISSOLVED OXYGEN







By:
Zakyah
120210153086
A-International
Group 1







BIOLOGY EDUCATION STUDY PROGRAM
SCIENCE DEPARTMENT EDUCATION
FACULTY OF TEACHER TRAINING AND EDUCATION
JEMBER UNIVERSITY
2014




I.                Title
Adjustment of Poikilothermik Animal about Dissolved Oxygen
II.             Purpose
This activity aims to determine adjustments to the poikilothermik animals:
-        The oxygen contained in the water due to the influence of water temperature
III.           Basic Theory
All organisms have lethal limits to their temperature range and yet within this range they also have optimal temperatures for development of structure and function. Within an ectotherms tolerance limits, variation in temperature will influence metabolism and therefore related physiological processes, affecting growth, development and performance—encompassing physiological and behavioural capabilities. Growth is the most commonly measured response in ectothermic animals and is often measured in isolation as indicative of response to temperature. However, temperature influences a range of characters, and early development such as the larval phase is especially susceptible to temperature change (Green, Bridget S., Fisher Rebecca, 2004). Thermoregulation is the maintenance of the animal's internal temperature kisarah tolerable (Champbell, 2008: 15)
              Terms that have some what greater presicion and also more information content are poikilothermic and hoothermic. A poikilothermic animal has a relatively variable body temperature; a hoothermic one has a relatively constant body temperature. These terms are useful but they became generally estabilished prior to the  development of a biologically adequate appreciation of the complexity of animal body temperature, and they communicate no information about mechanism (Gordon, et all, 1982: 335)
              According Soesono (1974) in Rasyid (2010), temperature is one of the physical properties of sea water which can affect the metabolism and growth of aquatic organisms, besides temperature affects the amount of dissolved oxygen in the water.
According Brotowidjoyo (1995) in Rasyid (2010) Temperature is oceanography parameters of the easiest to learn. Some research shows that fish are very sensitive to changes in temperature, although its value is very small (0,1oC), for example fish telestoi to respond to the changing temperatures of 0,03oC.
              Chemical characteristics, dissolved oxygen plays an important role in water in its function as the one that is needed by aquatic organisms. One that affect the levels of dissolved oxygen in water is temperature. Dissolved oxygen also determines the quantity of an aquatic organism. In addition, dissolved oxygen is also influenced by other factors such as water vapor pressure and salinity. Dissolved oxygen in the water column with a variety of reactions and chemical processes that take place in the waters, but the fluctuations in temperature will cause a change in the concentration of dissolved oxygen in the waters. (Purba and Khan, 2010)
              Animal life exists at body temperatures which range between -2"C, in fish and invertebrates living in arctic waters, to +50"C in desert-living animals. Some creatures may exist at even more extreme temperatures; for example, it is now known that some polychaete worms live in deep sea vents at temperatures exceeding 80°C. For the vast majority of animals, though, the range of temperatures over which any individual can live is normally much narrower than this. Most animals simply assume the temperature of their immediate external environment, but birds and mammals regulate their body temperature and maintain it at a relatively constant level which is different to that of their immediate external environment. (Kay, 1998: 91)
All organisms have a limit to temperature weeks to sustain their lives. At this temperature limit, there is an optimum temperature which is very good for the development of both structure and function. Temperature change will affect the metabolism and is also closely related to physiological processes, and implications for the growth and the development and behavior (Green & Fisher, 2004).
Temperature is an important factor in aquatic ecosystems. Water has several unique thermal properties, so that changes in the temperature of the water runs more slowly than in the air. Although the temperature is less volatile in water than in air, but the temperature is a major limiting factor, therefore aquatic creatures often have narrow tolerances (Ewusie, 1990: 180)
According to Kay (1998: 98-99) Ectothermic adaptations to extreme temperatures, when in  extreme cold, Some ectotherms, e.g. fish and invertebrates, are able to live in extremely cold environments, experiencing temperatures which have the potential to freeze animal tissues and fluids. Various strategies have evolved in order to overcome this problem. One final option that has evolved that allows ectotherms to survive cold environments is the addition of antifreeze proteins to body fluids, such as those found in fish which inhabit Antarctic waters. The proteins, which are glycoproteins (protein conjugated with a carbohydrate), are polymeric molecules of a monomer consisting of a tripeptide linked to a galactose derivative (alanine-alanine-threonine-galactose derivative). When in extreme hea, Ectotherms exposed to high temperatures have two means by which they survive. The fi rst of these is to increase the rate of cooling by evaporation (sweating). In many cases, this does not present a problem since many ectotherms are moist skinned. These animals simply increase cutaneous water loss. This is more of a problem for ectothermic animals which have a covering designed to minimize water loss, e.g. reptiles and insects.
Ectothermis animals or animal poikilothermis are animals that depend on external sources for the benefit of the heat, a little heat of their bodies obtained as a result of their overall metabolism. Animal ectothermis water, for example fish, loss of body heat through the gills. The heat setting is also related to the respiratory system of fish through the gills. Fish gills should be thin and well vascularized to qualify as a gas exchange that allows body heat is rapidly lost from the blood passing through the gills. Generally fish gills located between the two pumps, the pump mouth and gills pump. Pump mouth is supported by a set of basic muscles of the mouth, and gills pump supported by a gill cover movement (Soewolo, 2000).
              Gills has function to respiratory but can also function as a means of excretion of salts, food filter, ion exchange equipment, and osmoregulator. In almost all of the fish, the gills are important components in gas exchange. Gill arch cartilage is formed from hardened, with some gill filaments in it. Each gill filament consists of many lamella, which is where gas exchange. This task is supported by the lamella structure composed of mast cells as a buffer on the inside. Lamella periphery that are not attached to the gill arch is very thin, covered by epithelium tissue containing blood vessels and capillaries. The number and size of the lamella very large variations, depending on fish behavior (Fujaya, 2008).
              Fish do not like any kind of changes in their environment. Any changes add stress to the fish and the larger and faster the changes, the greater the stress. So the maintenance of all the factors becomes very essential for getting maximum yield in a fish pond. Good water quality is characterised by adequate oxygen, proper temperature, transparency, limited levels of metabolites and other environmental factors affecting fish culture (Bhatnagar and Devi, 2013). While the range of tolerance at Comet Goldfish in the lab this time is difficult to determine with certainty. However it is known that high temperature causes the operculum movement and low temperature rise lowers operculum movement.
Such a fish is in an environment characterized by a very high specific heat and a high level of thermal unformity. In the absence of special conditions, such as sustained intense activity, very lagre size, or counter current vascular mechanism, which prevent heat from passing rapidly from muscle to gills, all fishes, and for that matter all aquatic animals other than mammals and birds, have body temperatures that do very significantly from that of water in which they are floating (Gordon, et all, 1982: 340)
          Operculum movement is actually an indicator of the rate of respiration of fish. While temperature is a limiting factor for fish life. It is known that the high temperature will cause a reduction in dissolved oxygen gas, the result will accelerate the movement of operculum fish to get oxygen quickly as needed respirasinya. According Fujaya (2008) the low amount of oxygen in the water causing fish or aquatic animals need to pump large amounts of water to the surface to take Oxygen respirasinya tool. Fujaya adding that not only the large volumes required but also the pumping energy is also getting bigger.
These potential effects that an inappropriate level of dissolved oxygen may have on fish illustrates the importance of maintaining dissolved oxygen at a healthy level. Maintaining a healthy level of dissolved oxygen is not always easy. First you must know what the correct level of oxygen is for the particular species offish in the aquarium. Certain fish have adapted to different levels of dissolved oxygen. It is important to know the level of oxygen that is relevant to each species. There are many environmental factors that play a role in the amount of dissolved oxygen to which a particular fish is accustomed (Nolan, Collin.1996)
It is known that the oxygen uptake of a cold-blooded animal increases with rising temperature up to a certain maximum which is very near the thermal deathpoint. Beyond this maximum the oxygen uptake actually decreases for a very short range of rising temperatures, which indicates that the temperature is producing adverse effects. Winterstein argues that if the temperature increases beyond a certain point the oxygen requirements of the tissues are so high that the oxygen supply becomes inadequate and that death results from the consequent accumulation of metabolites. (Fraenkel And Herford, 1940)

IV.           Research Methods
4.1   Tools and Materials
 Tool
·       Plastic tub
      • Thermometers
      • Scales
      • Stove / heater
      • Beaker
      • Pan
      • Measuring cup
      • Mixer
      • Stopwatch
      • Board marker
      • Ice cubes
      • Jar
 Materials
- Animal experiment using carp (Cyprinus carpio)
4.2  Procedure
      Effect of medium temperature rise



















Rounded Rectangle: Calculating the operculum motion for one minute, and repeat up to three times the count, then be averaged


 
































     

Rounded Rectangle: Fill the jar with tap water up to the limit specified      Decrease the temperature















 































V.              Result of Observation

Group
Treatent
Weight (gr)
Temperature (0C)
Gerakan Operculum
Rata-rata
1
2
3
1
Dingin
7,69
28
25
22
19
16
13
10
7
141
103
95
60
50
18
11
colaps
141
95
100
70
59
26
11
colaps
135
89
66
95
61
34
14
colaps
139
94
87
75
57
26
12
2
Dingin
8
29
26
23
20
17
14
11
8
128
122
67
89
97
79
53
57
124
116
88
73
90
56
52
colaps
118
99
78
79
71
50
48
colaps
123
112
78
80
86
61
51

3
Dingin
11,9
30
27
24
21
18
15
12
9
133
106
109
88
61
48
27
colaps
109
86
99
73
64
47
48
colaps
115
88
87
101
60
48
40
Colaps
119
93,3
98,3
87,3
61,7
47,7
38,3
4
Panas
8,5
31
34
37
40
43
46
95
149
152
157
172
colaps
114
124
128
148
193
colaps
87
27
156
155
168
colaps
98,66
133,33
145,33
153,33
177,66
5
Panas
17
30
33
36
39
42
159
142
160
147
colaps
172
182
152
172
colaps
164
140
138
180 colaps
165
154,6
150
166
6
Panas
7,4
29
32
35
38
41
139
130
97
132
colaps
146
132
131
151
colaps
133
122
146
168
colaps
139,3
128
124,6
150,3



VI.            Discussion
          Pada praktikum ini tentang penyesuaian hewan poikilotermik terhadap oksigen terlarut yang bertujuan untuk mengetahui penyesuaian hewan poikilotermik terhadap oksigen yang terkandung di dalam air karena pengaruh suhu air. Seperti yang kita ketahui bahwa ikan merupakan hewan poikilotermik. Artinya, dalam mekanisme termoregulasinya ikan memiliki ketergantungan suhu terhadap lingkungannya. Hal ini dapat dibuktikan dengan percobaan menaikkan dan menurunkan suhu air tempat ikan tersebut hidup. Air yang digunakan untuk percobaan ini dengan dua perlakuan, yaitu panas dan dingin. Untuk kelompok 1, 2, dan 3 dengan menggunakan perlakuan penurunan suhu (air es) dan kelompok 4, 5, dan 6 menggunakan perlakuan kenaikan suhu (air panas).
          Data kelas yang diperoleh pada praktikum tersebut pada tiap kelompok adalah sebagai berikut;
          Hasil yang diperoleh kelompok 1 dengan perlakuan penurunan suhu dengan interval 30C menggunakan ikan mas dengan berat 7,69 gram menunjukkan pada suhu 280C diperoleh rata-rata hasil gerak operkulum ikan adalah 139 kali per-menit. Pada suhu 250C diperoleh rata-rata gerakan operkulum ikan adalah 94 kali per-menit. Pada suhu 220C diperoleh rata-rata hasil pengamatan gerak operkulum ikan adalah 87 kali per-menit. Pada suhu 190C diperoleh rata-rata gerak operkulum ikan adalah 75 kali per-menit. Pada suhu 160C diperoleh hasil rata-rata gerak operkulum ikan adalah 57 kali per-menit. Pada suhu 130C diperoleh rata-rata gerak operkulum ikan 26 kali per-menit. Dan pada suhu 100C diperoleh rata-rata gerak operkulum ikan 12 kali per-menit. Dan pada suhu 70C ikan mengalami kolaps.
          Hasil yang diperoleh kelompok 2 dengan perlakuan penurunan suhu dengan interval 30C menggunakan ikan mas dengan berat 8 gram yaitu pada suhu 290C diperoleh rata-rata hasil gerak operkulum ikan adalah 122 kali per-menit. Pada suhu 260C diperoleh rata-rata gerakan operkulum ikan adalah 112 kali per-menit. Pada suhu 230C diperoleh rata-rata hasil pengamatan gerak operkulum ikan adalah 78 kali per-menit. Pada suhu 200C diperoleh rata-rata gerak operkulum ikan adalah 80 kali per-menit. Pada suhu 170C diperoleh hasil rata-rata gerak operkulum ikan adalah 86 kali per-menit. Pada suhu 140C diperoleh rata-rata gerak operkulum ikan 61 kali per-menit. Dan pada suhu 110C diperoleh rata-rata gerak operkulum ikan 51 kali per-menit. Dan pada suhu 80C ikan mengalami kolaps.
          Hasil yang diperoleh kelompok 3 dengan perlakuan penurunan suhu dengan interval 30C menggunakan ikan mas dengan berat 11,9 gram yaitu pada suhu 300C diperoleh rata-rata hasil gerak operkulum ikan adalah 119 kali per-menit. Pada suhu 270C diperoleh rata-rata gerakan operkulum ikan adalah 93 kali per-menit. Pada suhu 240C diperoleh rata-rata hasil pengamatan gerak operkulum ikan adalah 98 kali per-menit. Pada suhu 210C diperoleh rata-rata gerak operkulum ikan adalah 87 kali per-menit. Pada suhu 180C diperoleh hasil rata-rata gerak operkulum ikan adalah 61 kali per-menit. Pada suhu 150C diperoleh rata-rata gerak operkulum ikan 47 kali per-menit. Dan pada suhu 120C diperoleh rata-rata gerak operkulum ikan 38 kali per-menit. Dan pada suhu 90C ikan mengalami kolaps.
          Hasil yang diperoleh kelompok 4 dengan perlakuan kenaikan suhu dengan interval suhu 30C dengan menggunakan ikan mas dengan berat 8,5 gram diperoleh hasil pada suhu 310C rata-rata gerak operkulum ikan adalah 98 kali per-menit. Pada suhu 340C diperoleh rata-rata gerak operkulum ikan adalah 133 kali per-menit. Pada suhu 370C diperoleh data rata-rata gerak operkulum sebanyak 145 kali per-menit. Pada suhu 400C diperoleh rata-rata gerak operkulum ikan adalah 153 kali per-menit. Pada suhu 430C diperoleh rata-rata gerak operkulum ikan adalah 177 kali per-menit. Dan pada suhu 460C ikan mengalami kolaps.
          Hasil yang diperoleh kelompok 5 dengan perlakuan kenaikan suhu dengan interval suhu 30C dengan menggunakan ikan mas dengan berat 17 gram diperoleh hasil pada suhu 300C rata-rata gerak operkulum ikan adalah 165 kali per-menit. Pada suhu 330C diperoleh rata-rata gerak operkulum ikan adalah 154 kali per-menit. Pada suhu 360C diperoleh data rata-rata gerak operkulum sebanyak 150 kali per-menit. Pada suhu 390C diperoleh rata-rata gerak operkulum ikan adalah 166 kali per-menit. Dan pada suhu 420C ikan mengalami kolaps.
          Hasil yang diperoleh kelompok 6 dengan perlakuan kenaikan suhu dengan interval suhu 30C dengan menggunakan ikan mas dengan berat 7,4 gram diperoleh hasil pada suhu 290C rata-rata gerak operkulum ikan adalah 139 kali per-menit. Pada suhu 320C diperoleh rata-rata gerak operkulum ikan adalah 128 kali per-menit. Pada suhu 350C diperoleh data rata-rata gerak operkulum sebanyak 124 kali per-menit. Pada suhu 380C diperoleh rata-rata gerak operkulum ikan adalah 150 kali per-menit. Dan pada suhu 410C ikan mengalami kolaps.
          Dari hasil pengamatan yang diperoleh pada percobaan tersebut dapat disimpulkan bahwa semakin tinggi suhu air gerak operkulum ikan semakin cepat karena oksigen yang terlarut didalam air semakin sedikit. Hal ini dikarenakan molekul air lebih padat dan lebih sulit bergerak atau mengalir, sehingga memungkinkan air jauh lebih sulit mengalir ke organ pernapasan. Oleh karena itu, ikan harus mengeluarkan energi lebih banyak. Hal ini dapat mempersulit ikan untuk memperoleh O2, apalagi dengan perlakuan berupa menaikkan dan menurunkan suhu.
Selanjutnya pada pengaruh punurunan suhu terhadap kelarutan oksigen di dalam air, pada penurunan suhu yaitu sampai pada suhu tertentu pada ikan dapat dilihat bahwa semakin suhu diturunkan dari suhu normal, maka gerakan operkulum juga semakin rendah. Hal ini menunjukkan bahwa semakin rendah suhu pada lingkungan maka intensitas gerakan operkulum semakin lambat dikarenakan proses metabolisme berjalan lambat dan memperlambat kerja organ pernafasan pada ikan karena membekunya berbagai organ vital seperti insang dan liver.
Hewan poikilotermik seperti ikan, mempertahankan kondisi tubuhnya ikan beradaptasi dengan cara konformitas yaitu menyesuaikan lingkungan internal tubuhnya dengan lingkungan eksternalnya. Salah satu bentuk adaptasinya adalah penyesuaian dengan suhu lingkungannya, sehingga ikan dapat dikatakan sebagai termokonformer. Setiap organisme termasuk hewan poikilotermik, memiliki rentang toleransi terhadap perubahan suhu lingkungan. Ketika terjadi perubahan suhu lingkungan, maka organisme akan melakukan proses homeostasis agar dapat bertahan dan menyesuaikan diri dengan lingkungan. Akan tetapi, jika perubahan suhu lingkungan ini melebihi batas toleransi hewan tersebut (suhu ekstrem), maka dapat dipastikan hewan tersebut tidak mampu bertahan. Inilah sebabnya pada suhu 46oC dan 7oC, ikan tidak mampu lagi menyusuaikan diri terhadap suhu lingkungannya.
Selama menaikkan atau menurunkan suhu, volume air di dalam bak harus tetap dijaga. Hal ini berkaitan dengan kelarutan oksigen dalam air. Apabila volume air menjadi lebih sedikit, maka ketersediaan oksigen di dalam cairan akan sedikit, dan sebaliknnya. Dengan mempertahankan volume air maka massa jenis akan tetap terjaga dan akan diketahui secara pasti apa pengaruh kenaikan dan penurunan suhu terhadap kelarutan oksigen. Namun sebelumnya berat ikan harus ditimbang. Berat ikan ini akan berpengaruh terhadap tingkat konsumsi oksigen. Jumlah O2 yang dibutuhkan dan dikonsumsi oleh hewan tergantung dari jenis dan ukuran hewan serta tingkat aktivitas hewan. Pada umumnya hewan dengan ukuran besar mempunyai tingkat metabolisme per berat badan yang lebih rendah dibandingkan dengan hewan kecil, dan karena itu hewan besar tidak membutuhkan terlalu banyak O2 dibandingkan hewan besar. Selain itu, tujuan volume air tetap dijaga yaitu agar pengukuran dari percobaan satu denagn percobaan yang lain valid.
          Kelarutan oksigen dalam cairan secara umum dipengaruhi oleh :
1.     Tekanan parsial oksigen (O2) di atas permukaan cairan. Makin tinggi tekanan O2 di atas permukaan cairan, makin tinggi pada kelarutan oksigen di dalam cairan.
2.      Suhu cairan atau medium. Makin tinggi suhu cairan/  medium, makin rendah kelarutan oksigen dalam cairan medium.
3.     Kadar garam di dalam cairan. Makin tinggi kadar oksigen cairan, makin rendah kelarutan oksigen di dalam cairan.
          Membuka dan menutupnya operkulum dipengaruhi proses respirasi ikan yang melalui insang. Semakin tinggi suhu suatu cairan maka semakin rendah viskositas cairan tersebut dan semakin berkurang kelarutan oksigen di dalamnya. Untuk mengatasi kondisi tersebut, maka ikan melakukan adaptasi dengan cara mempercepat gerakan operkulumnya. Dengan mempercepat gerakan operkulum, air yang masuk akan semakin banyak sehingga oksigen yang tersedia untuk memenuhi kebutuhan respirasinya juga akan lebih banyak, sehingga ikan tetap dapat mempertahankan hidupnya.
          Ikan merupakan hewan poikilotermik. Artinya, dalam mekanisme termoregulasinya ikan memiliki ketergantungan suhu terhadap lingkungannya. Hewan poikilotermik, mempertahankan kondisi tubuhnya dengan cara konformitas yaitu menyesuaikan lingkungan internal tubuhnya dengan lingkungan eksternalnya. Setiap organisme termasuk hewan poikilotermik, memiliki rentang toleransi terhadap perubahan suhu lingkungan. Ketika terjadi perubahan suhu lingkungan, maka organisme akan melakukan proses homeostasis agar dapat bertahan dan menyesuaikan diri dengan lingkungan. Akan tetapi, jika perubahan suhu lingkungan ini melebihi batas toleransi hewan tersebut (suhu ekstrem), maka dapat dipastikan hewan tersebut tidak mampu bertahan.


VII.         Closing
7.1  Conclusion
The higher the water temperature, the faster the fish operculum movement and concentration of dissolved oxygen in the water the less. Conversely, the lower the temperature of the water, then the fish operculum slow motion and dissolved oxygen levels more and more.
The solubility of oxygen in water is influenced by several things, namely the partial pressure of oxygen at the surface of the water, water temperature, and water salinity. The higher partial  pressure of the oxygen solubility will be higher. The higher the temperature the lower the solubility of oxygen. The higher the salinity, the lower the solubility of oxygen.
7.2  Suggestion
Practikan should be more careful and cautious in carrying out the lab and assistant should always accompany the practitioner in performing the experiment to minimize the occurrence of errors.



















REFFERENCE

Bhatnagar, Anita and Devi, Pooja. 2013. Water quality guidelines for the management of pond fish culture. Department of Zoology, Kurukshetra University, Kurukshetra, India. Volume 3, No 6, 2013.
Champbell, Neil A, et all. 2008. Biology Edisi kedelapan jilid 3. Jakarta: Penerbit Erlangga.
Ewusie. 1990. Pengantar Ekologi Tropika. Bandung. Penerbit Institut Teknologi Bandung 
Fraenkel And Herford. 1940. The Physiological Action Of Abnormally High Temperatures On Poikilotherm Animals. Department of Zoology and Applied Entomology, Imperial College of Science and Technology, London, S.W.7
Fujaya, Yushinta. 2008. Fisiologi Ikan. Jakarta. Penerbit P.T Rineka Cipta. 
Gordon, Malcom S, et all. 1982. Animal Physiology: Principle and Adaptation fourth edition. New York: Macmillan Publishing Co.Inc
Green, Bridget S., Fisher Rebecca. 2004. Temperature Influences Swimming Speed, Growth and Larval Duration in Coral Reef Fish Larvae. Journal of Experimental Marine Biology and Ecology, 299
Kay, Ian. 1998. Introduction To Animal Physiology. United Kingdom: BIOS Scientific Publishers Ltd
Nolan, Collin.1996. Ventilation rates for Goldfish Carassius auratus during changes in dissolved oxygen. Professional Papper. University of Nevada Las Vegas. 12-4-1996 
Purba, Noir P. and Alexander M.A. Khan. 2010. Karakateristik Fisika-Kimia Perairan Pantai Dumai Pada Musim Peralihan. Jurnal Akuatika Volume I Nomor 1/ Maret 2010
Rasyid, Abd. 2010. Surface Temperature Distribution in West-East Transition Season Related to Small Pelagic Fish Fishing Ground in Spermonde Waters. Torani (Jurnal Ilmu Kelautan dan Perikanan ) Vol. 20 (1) April 2010: 1 – 7
Soewolo. 2000. Pengantar Fisiologi Hewan. Jakarta: Departemen Pendidikan Nasional.




Tidak ada komentar:

Posting Komentar